A method of inexact steepest descent for systems of linear equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The steepest descent gravitational method for linear programming

We present a version of the gravitational method for linear programming, based on steepest descent gravitational directions. Finding the direction involves a special small “nearest point problem” that we solve using an efficient geometric approach. The method requires no expensive initialization, and operates only with a small subset of locally active constraints at each step. Redundant constra...

متن کامل

A Free Line Search Steepest Descent Method for Solving Unconstrained Optimization Problems

In this paper, we solve unconstrained optimization problem using a free line search steepest descent method. First, we propose a double parameter scaled quasi Newton formula for calculating an approximation of the Hessian matrix. The approximation obtained from this formula is a positive definite matrix that is satisfied in the standard secant relation. We also show that the largest eigen value...

متن کامل

On the Steepest Descent Method for Matrix

We consider the special case of the restarted Arnoldi method for approximating the product of a function of a Hermitian matrix with a vector which results when the restart length is set to one. When applied to the solution of a linear system of equations, this approach coincides with the method of steepest descent. We show that the method is equivalent with an interpolation process in which the...

متن کامل

On the Steepest Descent Method for Matrix

We consider the special case of the restarted Arnoldi method for approximating the product of a function of a Hermitian matrix with a vector which results when the restart length is set to one. When applied to the solution of a linear system of equations, this approach coincides with the method of steepest descent. We show that the method is equivalent with an interpolation process in which the...

متن کامل

Doubly Degenerate Diiusion Equations as Steepest Descent

For p 2 (1; 1) and n > 0 we consider the scalar doubly degenerate diiusion equation @ t s ? div(jrs n j p?2 rs n) = 0 in (0; 1) (1) with no{{ux boundary conditions. We argue that this evolution problem can be understood as steepest descent of the convex functional sign(m ? 1) Z s m ; provided m := n + p ? 2 p ? 1 > 0 ; (2) w. r. t. the Wasserstein metric of order p on the space of probability d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 1990

ISSN: 0898-1221

DOI: 10.1016/0898-1221(90)90252-f